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Physics-motivated numerical solvers for partial differential equations

L. San Martin and Y. Oono
Department of Physics and Materials Research Laboratory, 1110 West Green Street, and University of Illinois at Urbana–Champaign,

Urbana, Illinois 61801-3080
~Received 22 June 1995; revised manuscript received 25 August 1997!

Trying to capture the essential physics of a natural phenomenon directly on computers may lead us to useful
numerical schemes to solve the partial differential equation describing the phenomenon. Here we try to capture
the consequences of space-time translational symmetry such as advection in fluids or Huygens’ principle in
wave propagation. Efficient modeling of these phenomena becomes possible with the aid of Hermite polyno-
mial interpolations to realize a continuum on discrete lattices. To illustrate these ideas, we present a new
method to derive wave equation solvers that are high order but local~the computational cell or stencil includes
nearest neighbors only!, a clear advantage over standard high-order algorithms of the finite-difference or
finite-element families. The purpose of the paper is to demonstrate our methodology. Therefore, in two- and
three-spaces, details are given only for the lowest-order algorithms, a preview of a more optimal higher-order
scheme is also included.@S1063-651X~98!01204-5#

PACS number~s!: 02.70.Bf, 02.60.Cb
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I. INTRODUCTION

Many nonequilibrium phenomena are spatially extend
and the most popular means to model them is the pa
differential equation~PDE!. Resultant PDE’s are, howeve
often nonlinear, defying analytical approaches. Even w
the PDE’s are linear, the conventional ‘‘mathematical ph
ics’’ is not useful in many cases due, e.g., to nontrivial g
ometry of their domains. In this paper we wish to demo
strate that the problem of devising numerical solvers
~physically meaningful! PDE’s may be considered as mode
ing problems or at least motivated as such in physics. As
example of our approach, we present a wave equation so
based on Huygens’ principle@1#.

The new algorithms have several attractive features.
portant among them is the realization of high-order accur
without increasing the size of the computational cell, i.e.,
computational stencil includes nearest neighbors only.
also demonstrate that the fifth-order version of the algorit
can propagate sharp pulses over long distances with
distortion. This feature facilitates the development of high
order schemes that can be applied to practical situations
can include inhomogeneities and geometrically complica
boundaries. However, the main purpose of the paper i
explain our methodology. We evaluate the quality of the
gorithm in one-space and introduce the lowest order sch
for three-space. Results of two variants of the lowest-or
algorithm applied to a two-space test problem are given.
comparison we include a result obtained with a higher-or
version of the algorithm. A detailed evaluation and applic
tions of the higher-order scheme are planned to be given
subsequent paper@2#.

Our motivation came from the successful examples
solvers for the Cahn-Hilliard equation@3# and the Fisher-
KPP equation@4#. In fact these solvers were not conceiv
originally as PDE solvers. Modeling the phase transition
netics in terms of space-time discrete cell-dynamical syst
~CDS’s! @5# was initially conceived independent of the exis
ing PDE models more or less in the spirit of the lattice gau
theory @6#. The basic idea of the hyperbolic solver impl
571063-651X/98/57~4!/4795~16!/$15.00
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mented in this paper was an outcome ofab initio discrete
modeling of fluid dynamics~i.e., independent of the Navier
Stokes equation! within CDS’s @7#. There, an interpolation-
resampling strategy was proposed as a means to capture
tial translational symmetry on a discrete lattice. A natu
extension of this idea to wave propagation leads to the us
interpolation to implement Huygens’ principle on a lattice

Our approach may be interpreted as a general metho
devise numerical schemes for PDE’s in terms of Herm
interpolation. However, the details of how to use the Herm
interpolation and the convenience of using a high- or a lo
order implementation are conditioned by the type of PDE
be solved. We believe that the methods described below
ideal for PDE’s with a finite domain of dependence~crudely
speaking, PDE’s in which disturbances propagate with fin
speed!.

The use of interpolation is somewhat reminiscent of
finite-element strategy. However, the similarity is only s
perficial. The new algorithm is based on the implementat
of Huygens’ principle as a solution map for the wave equ
tion. The inclusion of additional equations for derivativ
make our algorithm explicit, unlike the traditional finite
element algorithms which are implicit. The new wave solv
is explicit and local as the second-order finite-difference
gorithms.

In Sec. II, we explain the interpolation-resampling a
proach based on the Hermite polynomial interpolation.
Sec. III, preliminary considerations on wave equation solv
are given, and the algorithm with which we compare o
results is presented. In Sec. IV, the general idea for the w
equation solver is presented and illustrated in one-sp
Two versions of the algorithm, based on third- and fift
order implementations of Huygens’ principle, are describ
and evaluated. The robustness of the fifth-order version
tested by computing the solution of the wave equation wit
position-dependent velocity. In Sec. V, a solver for the thr
space wave equation based on a third-order interpolatio
presented. Two versions of the algorithm are evaluated
two-space problem. In Sec. VI, an evaluation of the e
ciency of the optimal three-space solver is given. Section
is devoted to a summary and final remarks.
4795 © 1998 The American Physical Society
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II. INTERPOLATION-RESAMPLING STRATEGY

The use of interpolation for the computation of advecti
is an old idea. Krishnamurty@8#, more than 30 years ago
proposed the use of interpolation in an implicit scheme
computing advection in the context of weather predictio
Several improvements since then have produced the
called semi-Lagrangian advection schemes of wide acc
tance in the numerical weather prediction~NWP! community
@9#. These methods are now standard in medium range f
casts in many countries@10#. In weather prediction incom
pressibility is normally assumed, and the complications
sociated with shocks or contact discontinuities are
present.

Even though highly popular among the NWP communi
the method was not applied outside this community until
eighties. Benqueet al. @11# used a semi-Lagrangian approa
to compute the solution of the Navier-Stokes equation
two-space. Malevsky and co-workers used a parallel imp
mentation of a semi-Lagrangian scheme with third-or
splines in the context of advection diffusion, and the Navi
Stokes equations in two- and three-spaces@12,13#. Yabe and
co-workers@14# proposed a similar approach based on H
mite polynomial interpolation as a general hyperbolic eq
tion solver. Yabe and coworkers obtained excellent res
with their semi-Lagrangian scheme in several compress
hydrodynamic tests. They showed that shocks and con
discontinuities can be captured with as few as two g
points @14#. Several other highly nontrivial applications a
given in Refs.@14,15#.

To explain the interpolation-resampling strategy, we co
sider a numerical scheme for the elementary first-order lin
hyperbolic PDE:

~] t1c]x! f ~x,t !50, ~2.1!

wherec is a constant,]x[]/]x, and] t[]/]t. The ordinary
hyperbolic conservation law is close to this equation loca
in space. It is currently the trend in the physics and as
physics communities to use algorithms in which conser
tion is explicitly built into the schemes. Although such alg
rithms may be less prone to develop unphysical solutio
needless to say, conservation alone cannot guarantee th
curacy of the result. Conservation laws are often due to s
metry ~and variational principles!. Therefore, we conside
the symmetry of the system first. The crucial symmetry
hyperbolic transport systems is the~at least local! transla-
tional symmetry of space where the disturbance propag
at a finite speed. Equation~2.1! implies

f ~x,t1dt !5 f ~x2cdt,t !, ~2.2!

so that evolving Eq.~2.1! for dt is equivalent to estimatingf
accurately at positionx2cdt at time t. If we could describe
the translational symmetry of continuum space precisely,
estimation is trivial.

If we may assume that the grid mesh is fine enough@16#,
then we must try to preserve the information already c
tured by the values off sampled at the grid points. The bas
idea to implement this information preservation is illustrat
in Fig. 1. In short, we reconstruct the continuum with the a
of an appropriate interpolation method, translate it spatia
r
.
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and then resample the values of the translated interpola
the grid points. Thus the usefulness of this interpolatio
resampling strategy depends on the availability of good
terpolation schemes, which may be problem dependent.

There are many different interpolation schemes. Th
can be classified into two types: local interpolation schem
and global interpolation schemes. The most popular glo
interpolation schemes are spectral methods which uti
~generalized! Fourier expansion. We immediately recogni
two limitations of these methods. One is the requiremen
relatively simple geometry of the domain of the problem
order to be able to find the eigenmodes of the structure,
the other is the need of a large number of modes to cap
rapid localized changes such as shock fronts.

With a local interpolation these problems are considera
diminished. A characteristic feature of hyperbolic equatio
is the finite speed of propagation of disturbances, which
plies the localization of the domain of dependence of
solution. This feature is naturally implemented with a loc
interpolation scheme. In this respect the Hermite interpo
tion we have chosen is optimal because it involves only ne
est neighbors. Also, if we expect to use parallel compu
tional environments, it is generally more advantageous to
a local interpolation scheme than a global one. Among
local interpolation schemes, splines@12,13#, give interesting
alternative possibilities. High-order splines, however, requ
an extended stencil which makes the treatment of inhomo
neities and localized boundaries highly nontrivial.

We now describe the Hermite polynomial interpolatio
@17# used in the way proposed by Yabe and co-workers@14#.
As we show below, with the introduction of additional var
ables for derivatives, we obtain a high-order Hermite po
nomial interpolation that involves only nearest neighbors a
whose coefficients can be solved explicitly. The practica
useful lowest-order interpolation is the third order. The on
space case is discussed here in detail for the sake of illu
tion. Let $xi% be the coordinates of grid points on thex axis
ordered as $ i %. We use the notationsf @ i #5 f (xi),
f 8@ i #5 f 8(xi). The third-order Hermite interpolantFi(x) of
f (x) for xP@xi ,xi 11# is defined in terms off @ i #, f @ i 11#,
f 8@ i #, and f 8@ i 11# as

FIG. 1. Interpolation-resampling strategy. With the data at
grid points of the functionf , a continuous interpolant is generate
and shifted byvdt. Then, the interpolant is resampled to obta
new values off at the grid points.
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57 4797PHYSICS-MOTIVATED NUMERICAL SOLVERS FOR . . .
Fi~x![C3@ i #X31C2@ i #X21C1@ i #X1C0@ i #, ~2.3!

whereX5x2xi and the coefficientsCj@ i # ( j 50, . . . ,3) are
determined by the condition that the interpolant and its fi
derivative are continuous at the end points of the inter
@xi ,xi 11#. Thus we obtainC0@ i #5 f @ i #, C1@ i #5 f 8@ i #,

C2@ i #5
3~ f @ i 11#2 f @ i # !

Dx2 2
2 f 8@ i #1 f 8@ i 11#

Dx
, ~2.4!

and

C3@ i #5
f 8@ i #1 f 8@ i 11#

Dx2 2
2~ f @ i 11#2 f @ i # !

Dx3 , ~2.5!

whereDx[xi 112xi .
In order to use these explicit formulas for the coefficie

we needf @ i # and f 8@ i # at every time step. One way propose
in Ref. @14# ~actually the general idea was proposed by T
shevaet al. in 1975 according to Ref.@18#! is to introduce an
additional equation forf 8. This approach gives excellent re
sults when applied to compressible hydrodynamics and
many other cases@14,15#. Thus the interpolation algorithm
for Eq. ~2.1! reads as follows with this Yabe proposal. Let
denote the value off ( f 8) at thenth time step at the grid
point xi as f n@ i # ( f n8@ i #). The updating algorithm with the
third-order Hermite interpolation is given by

f n11@ i #5Fi~xi2cdt !5 f n@ i #1$~C3@ i #j1C2@ i # !j

1 f n8@ i #%j, ~2.6!

f n118 @ i #5]xFi~xi2cdt !5 f n8@ i #1~3C3@ i #j12C2@ i # !j,
~2.7!

wherej52cdt. This expression is forc,0. For c>0 the
equivalent expression is obtained by replacingDx with 2Dx
and i 11 with i 21 in Eqs. ~2.4! and ~2.5!. Yabe and co-
workers@14# computedCj and then used Eqs.~2.6! and~2.7!
to update the system. We can, however, combine these
steps into one as a map from the timen to the timen11 as

f n11@ i #5 f n@ i #A1@ i #1 f n@ i 2sgn~c!#A2@ i #2cdt$ f n8@ i #A3@ i #

1 f n8@ i 2sgn~c!#A4@ i #%, ~2.8!

f n118 @ i #52sgn~c!$ f n@ i #A5@ i #1 f n@ i 2sgn~c!#A6@ i #%/Dx

1 f n8@ i #A7@ i #1 f n8@ i 2sgn~c!#A8@ i #, ~2.9!

where the coefficients are functions of the Coura
Friedrichs-Lewy ~CFL! number, k[cdt/Dx, as A151
12k323k2, A2522k313k2, A3511k222k, A45k2

2k, A556k226k, A6526k216k, A75113k224k,
andA853k222k. The map defined by Eqs.~2.8! and~2.9!
has only one parameter,k, as can easily be seen by mult
plying Eq. ~2.9! by cdt; the map consisting of Eq.~2.8! and
cdt3Eq. ~2.9!, for the variablesf and f̃ 8[cdt f 8, is explic-
itly dependent only onk. In the one-space case shown
Eqs.~2.8! and ~2.9!, the stability of the scheme requires th
CFL number to be in@0,1# @19#.

Higher-order interpolation-resampling schemes can
constructed with the aid of higher-order derivatives such
t
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]x
2f . For each newly added derivative, the degree of the

terpolation polynomial increases by two. For example,
fifth-order Hermite scheme uses the continuity conditions
f , ]xf , and ]x

2f to determine the interpolation coefficient
The formulas for the fifth-order Hermite interpolant in on
space are given in Appendix A. In the following we demo
strate the quality of the fifth-order interpolation for the pu
advection problem@20,21#.

We must know the improvements that can be acco
plished by increasing the order of interpolation schemes.
this end the third- and fifth-order schemes are compa
through solving Eq.~2.1! with c51 for two types of initial
conditions: sharp pulses and smooth sinusoidal curves.
the sharp pulses we use a grid of 200 points with perio
boundary conditions andDx50.005 anddt50.2Dx ~i.e., k
50.2!. Recall that the map depends only on the ratiok
5cdt/Dx, so that the effect of the choice ofDx is only
throughk. We propagate the following pulses.
Pulse A:

u0@ i #5 H1
0

for ; i P$90, . . . ,110%
for ; i P$1, . . . ,89%ø$111, . . . ,200%.

~2.10!

Pulse B:

u0@ i #

5H 1
0
0.25~ i 288!

20.25~ i 2112!

for ; i P$92, . . . ,108%
for ; i P$1, . . . ,88%ø$112, . . . ,200%
for ; i P$89, . . . ,91%
for ; i P$109, . . . ,111% .

~2.11!

The results of pulse A after 1000 time steps are shown
Fig. 2~a!, and those after 20 000 steps in Fig. 2~b!. Numerical
diffusion is greatly reduced in the fifth-order scheme. Sm
overshootings at the edges of the pulse are due to the in
polation @14#. The results of other commonly used alg
rithms for the solution of pulse A are given in Yabe an
Takei @14#. Figure 2~c! contains the results for the initia
pulse B after 1000 time steps; those after 20 000 time s
are shown in Fig. 2~d!. For this pulse the fifth-order schem
produces almost no overshooting.

As a smooth initial condition we use a cosine functio
Pulse C:

u0@ i #5cos@k~ i 2N/2!Dx# for ; i P$1, . . . ,N%,
~2.12!

where k52p/(LDx), and L is the number of points pe
wavelength~ppw!. To be consistent with the periodic bound
ary conditions, we use wavelengths commensurate with
computational grid. For the third-order scheme we use a g
of N51000 points withDx50.005,dt50.2Dx, and the fol-
lowing values ofL: 31.25, 62.5, 125, 250, 500, and 100
For the fifth-order scheme we use a grid ofN5250 points
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with Dx50.02, dt50.2Dx, c51, and the values ofL:
3.90625, 7.8125, 15.625, 31.25, 62.5, 125, and 250.

Due to the periodic boundary conditions, after a cert
number of steps, the propagated sinusoidal curves retur
their initial positions. At such instants we measure the er
in the l 1 norm (ix2yi[(uxi2yi u) between the compute
and exact solutions. Figure 3~a! shows the growth of the
normalizedl 1-norm error for the third order with 62.5 ppw
and the fifth order with 15.625 ppw. We normalize the er
dividing the l 1-norm error by thel 1 norm of the initial con-
dition. Figure 3~b! shows the amplitude attenuation rates p
iteration as a function of the number of ppw. For the wa
equation numerical dispersion is the largest source of er
so the amplitude attenuation is not very significant.

Figure 3~b! demonstrates that the fifth-order scheme w
one-fourth as many grid points per wavelength produce
smaller error than the third-order scheme. The numbe
operations is six~10! additions and eight~12! multiplications
per update for the third-~fifth-! order scheme. The fifth orde
is superior@22#.

The extension of the above interpolation scheme to hig
dimensions is straightforward. For convenience, the th
order Hermite interpolation formulas for two- and thre
spaces, which will be used in Sec. V, are given in Appen
B.

Due to the inclusion of higher-order derivatives, t
memory requirement increases with the order of the sche
For example, in three-space a continuous function has t
first, six second, ten third, etc. independent derivatives@23#.
Correspondingly, the number of operations increases.
however,Dx can be made large enough to offset the diff

FIG. 2. Comparison of third-~left! and fifth- ~right! order
interpolation-resampling schemes. Propagation of the initial co
tion A after ~a! 1000 time steps and~b! 20 000 time steps. Propa
gation of the initial condition B~three points in the transition re
gion! after ~c! 1000 time steps and~d! 20 000 time steps.
n
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ence in number of operations and memory requirement, t
the higher-order method is more efficient, as we have see
the comparison of the third- and fifth-order schemes.

The Hermite polynomial interpolation we used for Eq
~2.1! satisfies the global conservation law that the sum ov
space off is preserved. This can be shown easily for a
higher-order schemes, provided the initial spatial derivativ
are zero~we can impose such initial conditions, as pointe
out by Yabe and co-workers@24#!. However, whether or not
conservation holds exactly is not very relevant in wa
propagation, because the main errors are due to nume
dispersion.

III. WAVE EQUATION

We wish to devise a solver for the linear wave equatio

~] t
22c2D!u~x,t !50. ~3.1!

This is a first step toward deriving algorithms for more com
plicated wave phenomena.

Wave equation solvers can be classified into two ma
types: frequency-domain solvers and space-time~ST! do-
main solvers. We are interested in the computation of tra

i-

FIG. 3. Comparison of errors of third- and fifth-orde
interpolation-resampling schemes for test C.~a! The growth of the
l 1-norm error.~b! The amplitude attenuation rates per iteration as
function of ppw for various CFL number.
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sient behavior in structures of complicated geometry with
without inhomogeneity. For this type of problems space-ti
methods are more appropriate. We do not compare w
frequency-domain methods because they are useful
when the eigenmodes of the structure of interest can
found easily. In such cases the frequency-domain solutio
computed first, and by taking an inverse Fourier transfo
the time domain solution is obtained@25#. The procedure
may be prohibitively expensive when the propagating wa
is composed of sharp pulses because of the wide band
quired.

The pseudospectral methods, although very good
simple geometries@26–28#, are not equally advantageou
when the domain boundaries do not coincide with the no
planes of the numerical lattice or when the geometrical
tails require smaller scales thanl/2 @29,30#. In such cases, to
maintain the accuracy of the scheme, a special treatmen
boundaries becomes necessary. The use of interpolatio
this purpose is natural. It might be convenient to develo
sort of hybrid scheme combining an algorithm based on
terpolation, as the one presented in this paper, with the o
nary procedures of the pseudospectral algorithms.

Among the ST methods there are two main types,
finite-element time domain~FETD! approach and the finite
difference time domain~FDTD! approach. Recently, ther
have been advances in explicit FETD methods for the w
equation@31#. The FETD methods so far proposed are, ho
ever, not better than the standard second-order FD
method; even though FETD methods can be high order
have a smaller error, the computational cost increases so
the second-order FDTD with a finer mesh is still more e
cient. We will not consider the standard FETD methods
cause they are implicit and, consequently, inefficient in co
parison to the FDTD methods for the computation
transients. In the last few years, FDTD methods have
come the preferred choice in many applications@32,33#.
FDTD algorithms are local in the sense that the evolution
a given grid point depends only on the local informati
around that grid point. Consequently, they are ideal for p
allel computation.

To contrast our results, we have chosen the second-o
centered differences~2-2CD! solver of the wave equation
With the notationun@ i jk #[u(xi jk ,ndt) for the scalar func-
tion u at position xi jk5( iDs, j Ds,kDs) and at time t
5ndt, the 2-2CD algorithm for the three-space wave eq
tion ~3.1! is

un11@ i jk #5S cdt

Ds D 2

$un@ i 11 jk#1un@ i 21 jk#1un@ i j 11k#

1un@ i j 21k#1un@ i jk 11#1un@ i jk 21#

26un@ i jk #%12un@ i jk #2un21@ i jk #. ~3.2!

The main reasons for the success of the second-order fi
difference algorithms are its efficiency and, in particular,
robustness. For example, Yee’s algorithm in electromag
tism has been extensively applied to materials with inhom
geneities, anisotropies, memory effects, etc.,@33#. This is a
reason for our choice. Further justifications of this cho
follow.
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First of all we wish to point out that many practical FDT
codes use second-order differences@33#. This is the case
even though it has been known for many years@34# that
higher-order finite-difference algorithms~e.g., fourth order!
are more efficient when applied to the propagation in hom
geneous space. The development has been slow bec
straightforward generalizations of FDTD to higher orde
lack robustness beyond the simple homogeneous space
out complicated boundaries. More elaborate high-or
FDTD for wave propagation is an active area of resea
@35,36#. We are, however, rather skeptical about the sign
cant and swift progress in general purpose high-order ac
rate codes that are practically applicable to, e.g., elasto
namics or Maxwell’s equations, especially when t
boundaries between media cannot coincide with the pla
of the numerical lattice. It is natural then to compare o
method with the 2-2CD method which is the basis of most
the practical space-time codes; e.g., Yee’s algorithm in e
tromagnetism can be reduced to Eq.~3.2! in homogeneous
space.

The key problem is to develop a high-order FDTD alg
rithm that is stable and keeps its high-order accuracy in
presence of inhomogeneity and nontrivial boundari
Higher-order schemes in the standard FDTD approach
quire larger stencils. When the media is inhomogeneo
e.g., in the staircase approximation, the stencil includes s
eral cells with different material constants. To obtain a sta
high-order accurate discrete implementation of the opera
in the general case is a difficult problem. A fourth-ord
method in space and time for smooth inhomogeneity w
proposed in Ref.@35#, but, as pointed out in Ref.@37#, there
is a discrepancy between the order of convergence in ho
geneous space and that with inhomogeneity. See Ref.@37#
for an error analysis of several higher-order schemes for
wave equation in inhomogeneous media. For the two-sp
inhomogeneous problem, Ref.@38# claimed to have devel-
oped a method which needs 68 coefficients per node
need be stored in order to account for the inhomogene
Our method which can be applied to the inhomogeneous c
as well, and requires 20 variables per node, in three-spac
an attractive alternative.

The high-order implementation of boundary conditions
also a nontrivial problem, with the additional complicatio
that there are no real grid points beyond the physical bou
aries. Only recently a one-space implementation of bound
conditions for high-order schemes that is stable in time w
proposed@39#. In the case of interfaces between media th
coincide with the planes of the grid mesh, a stable four
order algorithm was developed@40#. We are not aware of
more complicated geometries treated with high-order me
ods.

Given the slow progress in the development of stand
higher-order FDTD algorithms, we are proposing an alter
tive way to reap the benefit of higher orders, i.e., a sh
reduction of numerical dispersion that allows an overall
crease in efficiency. Although the number of operations
node increases, the reduction in numerical dispersion imp
that for a given error tolerance the higher-order methods
quire fewer points per wavelength, thus the higher-or
methods are also efficient in their use of memory resourc
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The main problem of the 2-2CD algorithm~3.2! is the
dispersion of the computed modes. That is, the phase ve
ity of numerical modes in the 2-2CD scheme varies w
modal wavelength, direction of propagation, and lattice d
cretization. Numerical dispersion can lead to nonphysical
sults such as pulse distortion and artificial anisotropy. Ps
dorefraction will be produced whenever the grid size var
with position. The severity of these problems depends on
length in time and the relation between the smallest wa
length of the propagating wave and the size of the grid me
For typical simulations 10–20 points per wavelength
used.

The stability limit of the 2-2CD algorithm for thed-space
problem is a CFL number less than or equal to 1/Ad. In
one-space, when the algorithm is used with a CFL num
equal to 1, the initial condition is propagated without disto
tion. This result does not extend to higher dimensions. T
distortion introduced by 2-2CD in higher dimensions is sim
lar to the distortion that occurs in the one-space prob
when run with a CFL number less than 1. In the next sect
we will evaluate the one-space algorithm for a CFL num
less than 1 in order to have an estimate of the performanc
higher dimensions. These results are also relevant for
propagation of waves in inhomogeneous materials in o
space, because in those cases the CFL number cannot b
same everywhere. For more details about the 2-2CD a
rithm for the wave equation, see Ref.@25#.

IV. WAVE PROPAGATION IN ONE-SPACE

We wish to solve the initial value problem of Eq.~3.1!
with the initial conditions,u(x,t) and] tu(x,t) given at some
initial time t in an infinite domainRd. The evolution fromt
to t1dt can be written as

S u~x,t1dt !
] tu~x,t1dt ! D5S K

c2LD
L
K D S u~x,t !

] tu~x,t ! D , ~4.1!

whereK, D, andL are linear operators depending on spa
dimensionality.

The generalized Huygens principle can be cast into
form of Eq. ~4.1!. In three-space for example, thanks to t
strong form of Huygens’ principle, all the terms in the m
are integrals with a spherical domain. Historically, Huyge
principle is older than the PDE called the wave equation
to d’Alembert. Recently, efficient algorithms for the comp
tation of scattering~elliptic equations! based on Huygens
equivalence principle were developed@41#. In our algorithm
we implement Eq.~4.1! with the aid of interpolants ofu(x,t)
and] tu(x,t).

In a bounded domain, map~4.1! should be used for the
grid points in the interior of the domain. The boundary g
points, defined as those grid points whose distance to
boundary is less thancdt, require a different map whos
details depend on the particular shape of the nearby bo
ary. In this paper we show how to construct a map for
interior grid points. The use of interpolation is advantageo
for the treatment of boundary conditions. Perhaps the s
plest way to deal with a boundary of arbitrary orientation
by redrawing the grid locally, in conformity with the shap
of the boundary, and then using the interpolation to trans
c-
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values between grids. This procedure for the modeling
boundaries was already developed in conjunction w
second-order schemes in electromagnetics@42#. In our algo-
rithm this approach can easily be incorporated because
interpolation is already available as an integral part of
algorithm.

We now restrict our attention to the one-space case
illustrate the basic scheme and evaluate the numerical er
Map ~4.1! in one-space takes the form:

u~x,t1dt !5 1
2 $u~x2cdt,t !1u~x1cdt,t !%

1
1

2c E
x2cdt

x1cdt

ds ] tu~s,t !, ~4.2!

] tu~x,t1dt !5
c

2
$2]xu~x2cdt,t !1]xu~x1cdt,t !%

1 1
2 $] tu~x1cdt,t !1] tu~x2cdt,t !%.

~4.3!

The use of third-order interpolation requires additional eq
tions for the spatial derivatives ofu(x,t) and] tu(x,t):

]xu~x,t1dt !5 1
2 $]xu~x2cdt,t !1]xu~x1cdt,t !%

1
1

2c
$] tu~x1cdt,t !2] tu~x2cdt,t !%.

~4.4!

]x] tu~x,t1dt !5
c

2
$2]x

2u~x2cdt,t !1]x
2u~x1cdt,t !%

1 1
2 $]x] tu~x1cdt,t !1]x] tu~x2cdt,t !%.

~4.5!

Note that all but the integral term in Eq.~4.2! are given by
simple shifts in space. We use the notationun@ i #
5u(xi ,ndt) „] tun@ i #5] tu(xi ,ndt), etc.… to denote the
value of u ~] tu, etc.! at time t5ndt and positionx5 iDx.
We proceed as follows. With given values ofun@ i #, ]xun@ i #,
] tun@ i #, and]x] tun@ i #, third-order interpolants for the func
tions u(x,t) and ] tu(x,t) are generated. By resampling th
interpolants at a distancecdt to the left or right of the grid
points, the shift terms in Eqs.~4.2!–~4.5! are computed. The
integral in Eq. ~4.2! is evaluated by integrating the third
order interpolant of] tu(x,t). We will call this algorithm
HUY3.

The use of fifth-order interpolation requires addition
equations for]x

2u(x,t) and ]x
2] tu(x,t). Spatial differentia-

tion of Eqs.~4.4! and ~4.5! gives

]x
2u~x,t1dt !5 1

2 $]x
2u~x2cdt,t !1]x

2u~x1cdt,t !%

1
1

2c
$]x] tu~x1cdt,t !2]x] tu~x2cdt,t !%

~4.6!

and
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]x
2] tu~x,t1dt !5

c

2
$2]x

3u~x2cdt,t !1]x
3u~x1cdt,t !%

1 1
2 $]x

2] tu~x1cdt,t !1]x
2] tu~x2cdt,t !%.

~4.7!

Knowing un@ i #, ]xun@ i #, ]x
2un@ i #, ] tun@ i #, ]x] tun@ i #, and

]x
2] tun@ i #, we can compute all the terms in Eqs.~4.2!–~4.7!

from the fifth-order interpolants ofu(x,t) and] tu(x,t) ~Ap-
pendix A!. We will call this algorithmHUY5.

To evaluate the quality of these two algorithms, we so
Eq. ~3.1! with sharp and smooth pulses as initial condition
This test is very important because, as we mentioned be
the errors in two- and three-spaces are of the same typ
two- and three-spaces there is the additional issue of num
cal anisotropy which is important, and can also be larg
diminished by theHUY schemes, as the tests in Sec. V sho
We now proceed to the description of the tests.

For the propagation of sharp pulses we use a grid of
points with periodic boundary conditions,Dx50.005, dt
50.2Dx, andc51.0. The initial conditions are as follows
For pulse D:

u0@ i #5 H1
0

for ; i P$90, . . . ,110%
for ; i P$1, . . . ,89%ø$111, . . . ,200%,

~4.8!

] tu0@ i #50 for ; i P$1, . . . ,200%. ~4.9!

For pulse E:

u0@ i #

5H 1
0
0.25~ i 288!

20.25~ i 2112!

for ; i P$92, . . . ,108%
for ; i P$1, . . . ,88%ø$112, . . . ,200%
for ; i P$89, . . . ,91%
for ; i P$109, . . . ,111%, ~4.10!

] tu0@ i #50 for ; i P$1, . . . ,200%. ~4.11!

Due to the periodic boundary conditions, the waves
back to the initial position every 1000 time steps. Figure 4~a!
exhibits pulse~D! after 1000 time steps and Fig. 4~b! after
20 000 time steps. The pulse propagated byHUY3 suffers a
rather large deformation. Numerical dispersion is drastica
diminished with HUY5. Figure 4~c! exhibits pulse E after
1000 time steps, and Fig. 4~d! after 20 000 time steps. W
can say that the error is small inHUY5 even after 20 000 time
steps. Large numerical dispersion errors completely dis
the pulses propagated with 2-2CD. We only show one r
resentative figure in this case. Figure 5 shows pulse D pro
gated with 2-2CD after 1000 time steps.

Figures 5~a!–5~d! exhibit the results for the same tes
with the 2-2CD algorithm. Needless to say, for the propa
tion of sharp pulses the 2-2CD algorithm is out of practi
question because of the large dispersion errors.

As a smooth initial condition we use a sinusoidal wa
packet with a Gaussian envelope for pulse F:

u0@ i #5cos@k~ i 2N/2!Dx#exp$2@~ i 2N/2!Dx#2/s2%
e
.
re,
In
ri-
y
.

0

o

y

rt
-

a-

-
l

for ; i P$1, . . . ,N%, ~4.12!

] tu0@ i #50 for ; i P$1, . . . ,N%. ~4.13!

For HUY3 we use a grid ofN51000 points with periodic
boundary conditions,Dx50.005, dt50.2Dx, c51.0, s
50.3, andk56.25p, which is equivalent to 64 ppw. Fo
HUY5 we use a grid ofN5250 points withDx50.02, dt
50.2Dx, c51.0,s50.3, andk56.25p, which is equivalent
to 16 ppw.

For the initial condition F the growth of thel 1-norm error
@43# of the 2-2CD algorithm with 64 ppw is given in Fig
6~a!. Figure 6~b! shows the growth of the error forHUY3 with
64 ppw. Figure 6~c! @Fig. 6~d!# shows the same results fo
HUY5 with 16 ppw~6.4 ppw!. HUY5 is superior to the 2-2CD

FIG. 4. Sharp pulse propagation withHUY3 ~left! and HUY5

~right!. Propagation of the initial condition D after:~a! 1000 time
steps and~b! 20 000 time steps; propagation of the initial conditio
E after:~c! 1000 time steps and~d! 20 000 time steps. A significan
reduction of the dispersion is clearly demonstrated.

FIG. 5. Sharp pulse propagation with 2-2CD algorithm. Prop
gation of the initial condition D after 1000. For the propagation
sharp pulses this scheme is practically out of the question.
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FIG. 6. Growth of thel 1-norm errors forHUY3, HUY5, and 2-2CD for the initial condition F, with a CFL number equal to 0.1, 0.5,
0.8, are shown.~a! 2-2CD algorithm with 64 ppw,Dx50.005.~b! HUY3 with 64 ppw.Dx50.005.~c! HUY5 with 16 ppw,Dx50.02.~d! HUY5

with 6.4 ppw,Dx50.05. Note thatHUY5 with 1
10 as many grid points per wavelength produces an error that is comparable~still smaller! to

the error due to 2-2CD.
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scheme for all types of initial conditions even with one-te
as many ppw, as demonstrated in Fig. 6~d!. Comparison of
CPU times for one-space cases are not important. In Sec
a detailed evaluation of the efficiency in the important thr
space case is given.

The errors shown in Figs. 6~b!–6~d! are much larger than
expected from pure attenuation of the sinusoidal wav
which can be estimated from Fig. 3~b!. Notice that the dis-
crepancy measured inl 1 norm between a sine wave and
shifted version with a small phase shiftd(!p) is linear ind.
We conclude that inHUY3 andHUY5 the main source of erro
is numerical dispersion. The high quality ofHUY5 in com-
parison to 2-2CD andHUY3 is a consequence of a large r
duction of numerical dispersion.

The stability ofHUY3 andHUY5 has been studied numer
cally. HUY3 is unstable for a CFL number that is an elem
of @0.91, 1.0#. We restrict the value of the CFL number to t
interval @0.0, 0.7#. For CFL numbers larger than 0.7, nume
cal dispersion becomes too large and the shape of an init
sharp pulse deteriorates rapidly.HUY5 is unstable for a CFL
number that is an element of@0.81, 1.0#, but again due to
numerical dispersion we restrict the CFL number to inter
@0.0, 0.75#.

Finally, we will test the robustness of our higher-ord
scheme HUY5 solving a spatially inhomogeneous mod
problem
I,
-

s,

t

lly

l

r

@] t
22c2~x!]x

2#u~x,t !50. ~4.14!

The initial Gaussian pulse and the position-dependent ve
ity c(x) are depicted in Fig. 7~a!. The maximum~minimum!
value for the velocity isc51.0 (c50.5). We use periodic
boundary conditions. In the following,d1 andd2 denote the
widths of the transition regions of the velocity of propagatio
measured in number of grid points, andw1 the width of the
initial Gaussian pulse. In Fig. 7~b! the result of 2-2CD with
1000 grid points~d1520, d25100, andw15100! is given.
This result can be considered as the correct solution; hig
resolution of space does not appreciably change the re
The result given by 2-2CD with 700 grid points~d1514,
d2570, andw1570! is displayed in Fig. 7~c!. This result is
slightly different from that in Fig. 7~b!. Figure 7~d! contains
the result ofHUY5 with 200 grid points~d154, d2520, and
w1520!. The fine structure in Fig. 7~d! is as good as that in
Fig. 7~c!. Note that sharp pulses are generated during
propagation. For example, the right most pulse in Fig. 7~d!
contains only seven grid points. The reduction in the num
of grid points with HUY5 has not been optimized. A more
detailed evaluation of propagation in inhomogeneous me
will be given elsewhere.

As a conclusion of this section we can say that our b
algorithm for wave propagation in one-space isHUY5. Even
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with one-tenth as many grid points per wavelength,HUY5

produces a smaller error than 2-2CD. The advantages o
new scheme become clear in higher dimensional spa
where, as shown in Sec. VI, it requires 1–2 orders of m
nitude fewer operations for solutions with the same er
tolerance.

V. WAVE PROPAGATION IN TWO- AND THREE-SPACES

We demonstrate the effectiveness of our methodology
ing the lowest-order scheme. With this lowest-order dem
stration we can already show stability and reduction num
cal dispersion and anisotropy. A more optimal version ba
on a fifth-order interpolation on a staggered grid, an ext
sion ofHUY5, is planned to be evaluated in detail and appl
to more challenging problems in a separate paper@2#. ~How-
ever, see, Sec. VI.!

In three-space, map~4.1! can be written as spherical av
erages around each point in space@45#:

FIG. 7. Demonstration of the robustness ofHUY5. Here Eq.
~4.13! is solved with HUY5 and 2-2CD.~a! The Gaussian wave
packet on the left is the initial condition. The functionc(x) is also
plotted in this figure. Its upper~lower! level is 1~0.5!. ~b! The result
of 2-2CD with 1000 grid points andDx50.005 anddt50.005. This
result is regarded as the accurate solution.~c! 2-2CD with 700 grid
pointsDx50.007 14 anddt50.007 14. Already there are some e
rors compared to~b!. ~d! HUY5 with 200 grid points andDx
50.025 anddt5Dx/2. The result is comparable to that of 2-2C
with 700 grid points~c!. The line in~d! is slightly broken due to the
small number of grid points. However, the details of the amplitu
are correctly captured. Note that the right most pulse in~d! contains
only seven points.
he
s,
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i-
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d

u~x,t1dt !5
1

4pc2~dt !2 E
ux2yu5cdt

d3y@dt] tu~y,t !1u~y,t !

1]au~y,t !cnadt#, ~5.1!

] tu~x,t1dt !5
1

4pc2~dt !2 E
ux2yu5cdt

d3y@] tu~y,t !

1]a] tu~y,t !cdtna1]au~y,t !2cna

1]a]bu~y,t !c2nanbdt#. ~5.2!

Greek suffices denote spatial coordinates, andn is the out-
ward normal to the surface of integration. The summat
convention is implied. In this case the strong form of Hu
gens’ principle holds. Map~5.1! is also known as the
Green’s representation formula for the wave equation.

To generate the third-order interpolants ofun(x,t) and
] tun(x,t), the values ofun(x,t), ]aun(x,t), ] tu(x,t), and
]a] tu(x,t) are needed. The maps foru(x,t), ]aun(x,t),
] tu(x,t) and]a] tu(x,t), with the integrals scaled to the un
sphereS2, are~s is the surface element!

u~x,t1dt !5
1

4p E
S2

ds@dt] tu~x1cdtn,t !1u~x1cdtn,t !

1na]au~x1cdtn,t !cdt#, ~5.3!

]au~x,t1dt !5
1

4p E
S2

ds@dt]a] tu~x1cdtn,t !1]au~x

1cdtn,t !1]anb]bu~x1cdtn,t !cdt#,

~5.4!

] tu~x,t1dt !5
1

4p E
S2

ds@] tu~x1cdtn,t !1na]a] tu~x

1cdtn,t !cdt12cna]au~x1cdtn,t !

1nanb]a]bu~x1cdtn,t !c2dt#, ~5.5!

and

]a] tu~x,t1dt !5
1

4p E
S2

ds@]a] tu~x1cdtn,t !

1]anb]b] tu~x1cdtn,t !cdt

1]a]bu~x1cdtn,t !2cnb

1]a]b]gu~x1cdtn,t !nbngc2dt#.

~5.6!

We use the notationsun@ i jk #5u(xi jk ,ndt), ]aun@ i jk #
5]au(xi jk ,ndt) „] tun@ i jk #5] tu(xi jk ,ndt), ]a] tun@ i jk #
5]a] tu(xi jk ,ndt)… for the values at timet5ndt at the grid
pointsxi jk . We proceed as follows. Assuming that we kno

e



r o
d
s
n

in
is

fo
n
a

ia
pr
e

a-

wo
ym

u
th
s
tiv
ap
a
th
gh
au
ul
h
o

an
n

of

th
r

f
al

00
rger
ks
s

2-
e of
2-
ns

of

e
ined
-
ction

on-
e

he
-

eri-
is

r-
ag-
e
ysis,
r
ns.

of

nt
pa-
or-

xact
he

is
een
e is
uted
en-

the
nd

4804 57L. SAN MARTIN AND Y. OONO
un@ i jk #, ]aun@ i jk #, ] tun@ i jk #, and]a] tun@ i jk #, we gener-
ate the interpolants for the functionsun(x,t) and] tun(x,t),
which are then used to evaluate formulas~5.3!–~5.6!. If we
implement the algorithm on a single grid, then the update
a given point, done by evaluating Eqs.~5.3!–~5.6!, requires
in three-space the generation of interpolants in the interio
the eight cells that surround that point. If we use instea
staggered grid approach, with subgrids A and B, the node
subgrid A being at the center of the cells of subgrid B, a
vice versa, then the evaluation of Eqs.~5.3!–~5.6! at a node
of subgrid A, requires the evaluation of the interpolants
the interior of a single cell of subgrid B. In both cases it
possible to derive explicit maps of the forms

un11@ i jk #5HUl@ i jk #LUl@ i jk #1HUTl@ i jk #LUTl@ i jk #,
~5.7!

]xj
un11@ i jk #5KUl@ i jk #LUl@ i jk #1KUTl@ i jk #LUTl@ i jk #,

~5.8!

] tun11@ i jk #5MUl@ i jk #LUl@ i jk #1MUTl@ i jk #LUTl@ i jk #,
~5.9!

] txj
un11@ i jk #5NUl@ i jk #LUl@ i jk #1NUTl@ i jk #LUTl@ i jk #.

~5.10!

Here summation convention is implied, andLUl@ i jk #
(LUTl@ i jk #) is a linear combination ofun@ i jk # and
]aun@ i jk #, ~] tun@ i jk # and ]a] tun@ i jk #!. The coefficients
HUl , KUl , MUl , NUl , HUTl , KUTl , MUTl , andNUTl
depend only on the properties of the medium. The map
the single grid implementation involves nearest, next-, a
next-next-nearest neighbors. In the staggered grid appro
the map involves only nearest neighbors.

Applications to wave propagation in anisotropic med
should be possible after numerically evaluating the appro
ate Green’s functions with, e.g., the method described in R
@44#. Our formulation is suitable for parallel implement
tions, because the solution at a given point depends only
the values at its surrounding points. We can obtain the t
space version of this algorithm assuming translational s
metry along one of the coordinate axes, i.e., the method
descent@45#.

A possible strategy for applications to inhomogeneo
media is to treat the terms including spatial derivatives of
parameters of the media as dependent sources, and then
the resultant integral equation inside each cell. An alterna
is to compute the local Green’s function or use some
proximation to it. This procedure might seem too costly
first sight, but the local problems are much simpler than
full problem. Complex geometries can be built throu
patching together simple pieces. We can expect that, bec
of the reduction to simpler problems, some analytic res
may be incorporated into the algorithm. Further researc
needed to determine the best way to model inhomogene
media in the framework of theHUY algorithms.

To demonstrate the reduction in numerical dispersion
numerical anisotropy, we run a simple two-space test. O
grid of 2003200 points withDx5Dy51.0,dt50.2Dx, and
at
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c51.0, we excite the center point at positionx5100 andy
5100 with a Gaussian excitation in the following way:

] tu~k11!@100,100#5] tuk@100,100#12e2[ ~k280!dt)2/6],
~5.11!

wherek is an integer number that indicates the number
time steps.

In Fig. 8~a! we present a contour plot of the solution wi
nonstaggeredHUY3 after 500 time steps with a CFL numbe
equal to 0.2. In Fig. 8~b! the contour plot of the result o
staggeredHUY3 after 500 time steps and a CFL number equ
to 0.2 is given. Figure 8~c! contains the contour plot of the
result of the equivalent problem solved with 2-2CD after 2
time steps and a CFL number equal to 0.5. We use a la
time step with 2-2CD because it is known that 2-2CD wor
better with dt nearer the stability limit. The contour line
should be perfect circles, but the contours produced by
2CD are clearly distorted. The distortion is a consequenc
numerical anisotropy, which is one of the problems of
2CD, as we mentioned in Sec. III. No anisotropic distortio
can be seen in the results obtained with both versions
HUY3.

For the same input~5.11!, we compare the results of th
three schemes with the exact solution which can be obta
from the convolution of Eq.~5.11! and the two-space im
pulse response. The comparison is done at a cross se
parallel to thex axis with y5100. In Fig. 9~a! the compari-
son between the nonstaggeredHUY3 and the exact solution is
presented. It is seen that the solution computed with the n
staggeredHUY3 deviates from the exact solution near th
propagating front. This error is due to overshooting in t
interpolation@14#. In Fig. 9~b! we show the comparison be
tween the exact solution and staggeredHUY3. There is an
undulation on the internal side of the front caused by num
cal dispersion. For comparison the same test with 2-2CD
shown in Fig. 9~c!. The distortion due to numerical dispe
sion is very clear. The best results are obtained with st
geredHUY3; however, this algorithm is not superior to th
2-2CD, because, in agreement with the one-space anal
the improvement withHUY3 is not enough to compensate fo
the additional cost due to the larger number of operatio
How the staggered version of staggeredHUY5 can solve the
problem may be glimpsed from Sec. VI. A full description
HUY5 is planned to be presented in a separate paper.

We also computed the solution for a point source in fro
of an interface that separates two media with different pro
gation velocities in the case when the amplitude and its n
mal derivative are continuous across the interface. The e
solution for this problem can be obtained with, e.g., t
Cagniard–De Hoop method@46#.

The solution withHUY3 was obtained by implementing
Huygens’ principle on both sides of the interface. This
equivalent to assuming that the interface is located betw
two nodal planes of the grid. The treatment of the interfac
approximate because, even though the solution is comp
correctly on both sides of the interface, the interpolant g
erated across the interface only approximately represents
effect of the interface. Further research to improve beyo
this approximation is being undertaken.
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FIG. 8. Numerical anisotropy. A comparison betweenHUY3 and 2-2CD. Ten level contour plots of the results of the propagation with~a!
the nonstaggeredHUY3 after 500 time steps with a CFL number equal to 0.2,~b! the staggeredHUY3 after 500 time steps with a CFL number
equal to 0.2, and~c! 2-2CD after 200 time steps with a CFL number equal to 0.5.
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We use a grid of 2003200 points with the interface lo
cated at positiony5100.25, and a Gaussian excitation l
cated atx5100 andy5110, as

] tu~k11!@100,110#5] tuk@100,110#10.5e2@„~k280!dt…2/24#.
~5.12!

In Fig. 10~a! the result is compared with the exact sol
tion at positionsx5100 and y5120. The same problem
solved with the 2-2CD algorithm is shown in Fig. 10~b!. The
improvement with respect to 2-2CD is not significant for t
same reasons stated above.

In our tests we have found that the three-space~two-
space! version of the nonstaggeredHUY3 is stable for a CFL
number less than or equal to 0.11~less than or equal to 0.2!.
Also from numerical tests, the stability limit of staggere
HUY3 has been found to be a CFL number equal to 0
independent of dimensionality.

The idea of implementing Huygens’ principle with the a
of interpolation is not limited to Cartesian grids. The alg



as
to

up
eep
e.

e
tag-

d-
ith
o-
e

the

he

4806 57L. SAN MARTIN AND Y. OONO
FIG. 9. Numerical dispersion. A comparison betweenHUY3 and
2-2CD. The signal is measured along the liney5100. Results ob-
tained with~a! the nonstaggeredHUY3 with a CFL number equal to
0.2, ~b! staggeredHUY3 with a CFL number equal to 0.2, and~c!
2-2CD with a CFL number equal to 0.5.
rithm should work equally well on grids of arbitrary shape
long as we have a good quality interpolation over which
implement Huygens’ principle.

VI. EFFICIENCY OF HUY5 IN THREE-SPACE

In three-space the number of independent derivatives
to second order is 9. For the wave equation we need to k
track of two functions, the amplitude and its time derivativ
Therefore,HUY5 ~HUY3! in three-space requires 20~eight!
variables per grid point. If we straightforwardly extend th
nonstaggered method discussed up to this point, the nons
geredHUY5 would require 670 multiplications and 1600 a
ditions, 2300 total. These values are to be compared w
eight additions and three multiplications in the 2-2 CD alg
rithm. Notice that, even with this large difference in th
number of operations per grid point, the nonstaggeredHUY5

can be made more efficient than the 2-2 CD thanks to

FIG. 10. Interface. Comparison with the exact solution. T
signal is measured at positionsx5100 andy5120. Results ob-
tained with~a! the staggeredHUY3 with a CFL number equal to 0.2
compared with the exact solution.~b! 2-2CD with a CFL number
equal to 0.5 compared with the exact solution.
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reduction in the number of grid points by a factor of 10,
shown in the one-space case. With this factor, the reduc
in the number of grid points is 1000. Furthermore with
CFL number equal to 0.1, the largerdt gives an additional
factor of 2 for a total of 2000, i.e., approximately ten tim
faster, with a memory requirement 100 times smaller th
the 2-2 CD.

The use of a staggered grid considerably improves
efficiency of theHUY5. In the staggered mesh scheme t
values at the grid points (i , j ,k) are used to compute new
values at positions on the staggered grid at (i 1 1

2 , j 1 1
2 ,k

1 1
2 ), and vice versa. There are three main advantages. F

the unit cell for the staggered computation has only ei
points, which permits a reduction in the number of ope
tions per step by a factor of approximately 2. Second,
symmetry of the homogeneous space is better represe
because all the neighbors used in every update are eq
weighted. Lastly, the stability limit is increased considera
from a CFL number equal to 0.1 to one equal to 0.4. T
staggeredHUY5 requires a total of about 1000 operation
less than one half the number required for the nonstagg
scheme. Notice that if we assume a reduction in the num
of points by a factor of 4 in each direction, with a CF
number equal to 0.3,HUY5 and 2-2 CD have comparabl
CPU efficiencies, withHUY5 requiring about one-third the
memory. With a reduction in the number of points by a fa
tor of 6 ~10! and a CFL number equal to 0.3, there is
efficiency gain factor of 7~60! over the 2-2 CD algorithm. In
addition, from the parallel computation point of view,HUY5

has more to gain, because a large part of the operation
each grid point can be done in parallel without any comm
nication cost. Figure 11 shows a result ofHUY5 for the same
test of Sec. V. It is seen that the wave front can be captu
with one cell with no visible distortion due to numeric
dispersion. The continuous line corresponds to the exact
lution obtained as a convolution of the impulse response
a Gaussian with standard deviations5Dx/2.

VII. SUMMARY AND FINAL REMARKS

We have demonstrated the possibility of constructing
ficient numerical solvers for hyperbolic PDE’s by capturi
the crucial physics, e.g., the symmetries of space-time
plicit in Huygens’ principle for the wave equation. A de
tailed evaluation of the one-space algorithms demonstrat
large reduction of numerical dispersion as the order of
interpolation increases. As a matter of fact, in one-space
algorithmHUY5, based on a fifth-order interpolation, is mo
accurate than the popular 2-2 CD algorithm even with o
tenth as many grid points per wavelength. InHUY5 the num-
ber of operations per node is higher, but the reduction in
number of grid points can make it significantly more ef
cient. In two- and three-spaces,HUY3, based on a third-orde
interpolation, has been explained in detail to demonst
that our approach is not confined to one-space. A two-sp
test shows that numerical anisotropy is reduced. A comp
son of the results of the two-space test with the exact s
tion, obtained as a convolution between the input and
two-space Green’s function, demonstrates that the stagg
algorithm is the most accurate. A preview of the result
staggeredHUY5 has been added to show that with this alg
s
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rithm sharp fronts can be captured with a single grid po
The improvement over standard algorithms is especially
nificant when the wave is a short pulse.

Efficiency gain for wave propagation in homogeneo
space is usual with standard high-order FDTD algorithm
For conventional schemes, high order is achieved by enl
ing the numerical stencil. In contradistinction, the numeri
stencil used by the staggeredHUY algorithms includes near
est neighbors only, independent of the order of the inter
lation used.

The algorithm can also be applied to anisotropic me
once the appropriate Green’s functions have been compu
This can be accomplished with the aid of, e.g., the meth
described in Ref.@44#. The idea of using interpolation to
implement Huygens’ principle can be extended to nonstr
tured grids in a general geometry.

In one-space, we have usedHUY5 to solve a simple wave
propagation problem with a position dependent velocity.
the presence of sharp spatial variations in the medium,
solution remains stable and accurate. In two-space the p
lem of a point source in front of an interface between tw
media has been computed with the staggeredHUY3. A pos-
sible strategy for the general case is to treat the terms w
spatial derivatives of the parameters of the media as de
dent sources, and then solve the resultant integral equa
inside each cell. The solution under the assumption of lo
constant velocity should give a first approximation. It mig
be possible to improve beyond this approximation by, in
worse case, computing the local Green’s functions. Furt
research has been undertaken to determine the most a
priate way to model material inhomogeneities within t
framework of theHUY algorithms.

We consider the wave equation solvers presented in
paper as a first step toward the development of solvers
more complicated problems, e.g., pulse propagation in in
mogeneous or anisotropic materials with complicated bou
ary conditions or propagation of short pulses in nonline
materials, both, situations in which space-time methods
superior to frequency-domain methods@47#. Also note that

FIG. 11. HUY5 result, in a grid of 50350 points, with the exci-
tation at~25,25!. The signal is measured along the liney525. The
exact result is given by the continuous line, and numerical resu
indicated with~1!.
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the interpolation-resampling strategy is an ideal means
realize nonperturbative renormalization-group methods,
lowing continuous scaling@48#.
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APPENDIX A: FIFTH-ORDER HERMITE
INTERPOLATION IN ONE-SPACE

The fifth-order interpolantFi(x) of f (x), valid for
@xi ,xi 11#, is

Fi~x!5C5@ i #X51C4@ i #X41C3@ i #X31C2@ i #X21C1@ i #X

1C0@ i #, ~A1!

where X5x2xi and the coefficientsCj@ i # ( j 51,...,5) are
determined by the conditions of continuity of the interpola
Fi(x) and its first and second derivatives at the end point
the interval @xi ,xi 11#. Thus we haveC0@ i #5 f @ i #, C1@ i #
5 f 8@ i #, C2@ i #5 f 9@ i #/2, and

C5@ i #5
6~ f @ i 11#2 f @ i # !

~Dx!5 2
3~ f 8@ i 11#1 f 8@ i # !

~Dx!4

1
f 9@ i 11#2 f 9@ i #

2~Dx!3 , ~A2!

C4@ i #5
15~ f @ i #2 f @ i 11# !

~Dx!4 1
8 f 8@ i #17 f 8@ i 11#

~Dx!3

1
3 f 9@ i #22 f 9@ i 11#

2~Dx!2 , ~A3!

C3@ i #5
10~ f @ i 11#2 f @ i # !

~Dx!3 2
4 f 8@ i 11#16 f 8@ i #

~Dx!2

1
f 9@ i 11#23 f 9@ i #

2Dx
. ~A4!

The resampling formulas analogous to formulas~2.6! and
~2.7! are
to
l-

-

k
is

o

e
n

f

t
f

f n11@ i #5Fi~xi2cdt !5 f n@ i #1†@$~C5@ i #j1C4@ i # !j

1C3@ i #%j1 f n9@ i #/2#j1 f 8@ i #‡j, ~A5!

f n118 @ i #5]xFi~xi2cdt !5 f n8@ i #1†$~5C5@ i #j14C4@ i # !j

13C3@ i #%j1 f 9@ i #] j, ~A6!

f n119 @ i #5]x
2Fi~xi2cdt !5 f n9@ i #1$~20C5@ i #j112C4@ i # !j

16C3@ i #%j, ~A7!

where j52cdt. This expression is valid forc,0. For c
>0 the equivalent expression is obtained by replacingDx
with 2Dx, andi 11 with i 21 in Eqs.~A2!, ~A3!, and~A4!.

APPENDIX B: THIRD-ORDER HERMITE
INTERPOLATION IN TWO- AND THREE-SPACES

In two-space the third-order Hermite interpolantFi j (x)
for f (x) in the first quadrant (x,y)P@xi ,xi 11#3@yj ,yj 11# is
defined as

Fi j ~x!5B1@ i j #X31B2@ i j #Y31B3@ i j #X2Y1B4@ i j #XY2

1B5@ i j #X21B6@ i j #Y21B7@ i j #XY1]xf @ i j #X

1]yf @ i j #Y1 f @ i j #, ~B1!

whereX5x2xi andY5y2yi . The seven constantsBi are
solved from the conditions of continuity off at (i 11,j ),
( i , j 11), and (i 11,j 11) and continuity of]xf and ]yf at
( i 11,j ) and (i , j 11). The interpolation for the other quad
rants has the same form with different sets of constants.
conditions of continuity are imposed at the corners of
quadrants.

In hydrodynamic applications the direction of the veloc
determines which of the surrounding neighbors are to
used to implement advection correctly. In two-space
signs ofux anduy determine one of the possible four qua
rants; in three-space the signs ofux , uy , anduz determine
one of the possible eight octants. A special step in the a
rithm has to be introduced to make this selection. For
wave equation, all the surrounding octants contribute, so
no selection step is needed to implement Huygens’ princi

In three-space the third-order interpolantFi jk(x) for f (x)
defined in the first octant (x,y,z)P@xi ,xi 11#3@yj ,yj 11#
3@zk ,zk11# is

Fi jk~x!5C1@ i jk #X31C2@ i jk #Y31C3@ i jk #Z3

1C4@ i jk #X2Y1C5@ i jk #XY21C6@ i jk #X2Z

1C7@ i jk #XZ21C8@ i jk #Y2Z1C9@ i jk #YZ2

1C10@ i jk #XYZ1C11@ i jk #X21C12@ i jk #Y2

1C13@ i jk #Z21C14@ i jk #XY1C15@ i jk #XZ

1C16@ i jk #YZ1]xf @ i jk #X1]yf @ i jk #Y

1]zf @ i jk #Z1 f @ i jk #, ~B2!

where X5x2xi , Y5y2yi and Z5z2zi . The 16
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constantsCi are solved from the conditions of continuity off
at (i 11,j ,k), (i , j 11,k), (i , j ,k11), ~i 11,j 11,k), (i
11,j ,k,11), (i , j 11,k11), and (i 11,j 11,k11), and
continuity of]xf , ]yf , and]xf at (i 11,j ,k), (i , j 11,k), and
ic
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( i , j ,k11). The interpolation for other octants has th
same form. The coefficients are solved from the conditio
of continuity at the corners of those octants. For more
tails, see Ref.@14#.
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